Posts

Showing posts from July 24, 2025

HVAC MEP Thumb Rules & Formulas (With Examples)

Image
  HVAC MEP Thumb Rules & Formulas (With Examples) 1. Heat Load Calculation  Formula: Q = Area (sq.ft) x Heat Load Factor (BTU/hr per sq.ft) Example: 500 sq.ft office: Q = 500 x 30 = 15,000 BTU/hr TR = 1.25 2. CFM Calculation Formula: CFM = Sensible Heat (BTU/hr) / (1.08 x Delta T) Example: 12,000 BTU/hr, Delta T = 20°F CFM = 556 3. AHU/FCU Sizing Rule: 1 TR = 400 CFM 2 TR Airflow = 800 CFM 4. Duct Sizing Velocity Limits: Main: 1400-1800 FPM 800 CFM @ 1000 FPM 0.8 sq.ft 14"x10" 5. Chilled Water Flow Rate Formula: GPM = BTU/hr / (500 x Delta T) Example: 24,000 BTU/hr GPM = 4.8 6. Pipe Sizing 1" pipe: 8-12 GPM 2" pipe: 30-40 GPM 35 GPM Use 2" 7. Chiller Sizing Formula: TR = BTU/hr / 12,000 Example: 60,000 BTU/hr → 5 TR 8. Cooling Tower Sizing Rule: Heat Rejection = 1.25 x Load 10 TR → Tower = 12.5 TR 9. Pump Head Calculation Formula: Power (kW) = (Q x H x 9.81) / (Efficiency x 1000) Example: Q = 5 L/s, H = 20 m, Efficiency = 0.75 Power 1.31 kW 10. Fresh Air Re...

VALVES USED IN A CHILLER SYSTEM AND THE TYPICAL VALVE PACKAGE

Image
  VALVES USED IN A CHILLER SYSTEM AND THE TYPICAL VALVE PACKAGE 1.Chilled Water Side Valves ⇒Isolation valve (manual/electric actuated). ⇒ Installed on CHW supply and return lines.  ⇒ Used to isolate chiller for maintenance. 2. Balancing Valve (Manual or Automatic)  ⇒ Ensures correct flow rate to/from chiller.  ⇒ Helps maintain Delta T and proper flow distribution.  ⇒ Located after evaporator outlet (return line). 3. Differential Pressure Bypass Valve (if 2-way valves in system)  ⇒ Prevents excess pressure build-up when terminals shut.  ⇒ Maintains flow through chiller. 4. Flow Switch  ⇒ Senses chilled water flow across evaporator.  ⇒ Safety interlock: trips chiller if flow is lost.  ⇒ Usually paddle type or electronic. 5. Air Vent Valve (Manual or Automatic)  ⇒ Removes air pockets.  ⇒ Placed at high points of piping and chiller headers. 6. Drain Valve  ⇒ For flushing, cleaning, and maintenance.  ⇒ Located at low poin...