Skip to main content

TRANSMITTER

 TRANSMITTER. 


A transmitter is a device that converts a physical parameter or signal into an electrical signal that can be transmitted to a control system, monitor, or other device. 

Transmitters are commonly used in various industries, including:



A. Types of Transmitters


1. Pressure Transmitters: Measure pressure levels in fluids or gases.


2. Temperature Transmitters: Measure temperature levels in processes.


3. Flow Transmitters: Measure fluid flow rates.


4. Level Transmitters: Measure liquid levels in tanks or vessels.


B. Applications


1. Process Control: Transmitters provide real-time data for control and monitoring.


2. Industrial Automation: Transmitters integrate with control systems for efficient operation.


3. Monitoring and Safety: Transmitters detect anomalies and trigger alarms or shutdowns.


C. Benefits


1. Accurate Measurements: Transmitters provide precise data for process control.


2. Improved Efficiency: Transmitters optimize process performance and reduce waste.


3. Enhanced Safety: Transmitters detect potential hazards and prevent accidents.


Transmitters play a crucial role in various industries, enabling precise control, monitoring, and safety.

Comments

Popular posts from this blog

Type of Heat Exchanger

 There are several types of heat exchangers used in HVAC systems, including: 1. Coil Type:     - Chilled water coils     - Hot water coils     - DX (direct expansion) coils     - Evaporator coils     - Condenser coils 2. Shell and Tube Type:     - U-tube heat exchangers     - Straight tube heat exchangers 3. Plate Type:     - Plate and frame heat exchangers     - Plate and shell heat exchangers 4. Finned Tube Type:     - Finned tube heat exchangers 5. Spiral Type:     - Spiral heat exchangers 6. Regenerative Type:     - Regenerative heat exchangers 7. Adiabatic Type:     - Adiabatic wheel heat exchangers 8. Run-Around Coil Type:     - Run-around coil heat exchangers These heat exchangers are used in various applications, including: - Air conditioning - Heating - Ventilation - Refrigeration - Heat recovery - Industrial processes Each type of hea...

HVAC common unit converter chart

 Here's a comprehensive HVAC unit converter chart: Volume Flow Rate 1.CFM (Cubic Feet per Minute) to CMH (Cubic Meters per Hour):  1 CFM ≈ 1.699 CMH 2.CFM to m³/s (Cubic Meters per Second):  1 CFM ≈ 0.000472 m³/s Airflow Velocity 1.FPM (Feet per Minute) to m/s (Meters per Second):  1 FPM ≈ 0.00508 m/s 2.m/s to FPM:  1 m/s ≈ 196.85 FPM Energy and Power 1.BTU/h (British Thermal Units per Hour) to kW (Kilowatts):  1 BTU/h ≈ 0.000293 kW 2.Tons of Refrigeration to kW:  1 Ton ≈ 3.517 kW Pressure 1.Inches of Water Gauge (in wg) to Pascals (Pa):  1 in wg ≈ 249.08 Pa 2.PSI (Pounds per Square Inch) to kPa (Kilopascals):  1 PSI ≈ 6.895 kPa Temperature 1.°F (Fahrenheit) to °C (Celsius):  °C = (°F - 32) × 5/9 2.°C to °F:  °F = °C × 9/5 + 32 Additional Conversions Length 1.Inches to Millimeters:   1 inch = 25.4 mm 2.Feet to Meters:  1 foot = 0.3048 meters Area Square Feet to Square Meters:  1 sq ft = 0.0929 sq m Volume Gallons to L...

VALVES USED IN A CHILLER SYSTEM AND THE TYPICAL VALVE PACKAGE

  VALVES USED IN A CHILLER SYSTEM AND THE TYPICAL VALVE PACKAGE 1.Chilled Water Side Valves ⇒Isolation valve (manual/electric actuated). ⇒ Installed on CHW supply and return lines.  ⇒ Used to isolate chiller for maintenance. 2. Balancing Valve (Manual or Automatic)  ⇒ Ensures correct flow rate to/from chiller.  ⇒ Helps maintain Delta T and proper flow distribution.  ⇒ Located after evaporator outlet (return line). 3. Differential Pressure Bypass Valve (if 2-way valves in system)  ⇒ Prevents excess pressure build-up when terminals shut.  ⇒ Maintains flow through chiller. 4. Flow Switch  ⇒ Senses chilled water flow across evaporator.  ⇒ Safety interlock: trips chiller if flow is lost.  ⇒ Usually paddle type or electronic. 5. Air Vent Valve (Manual or Automatic)  ⇒ Removes air pockets.  ⇒ Placed at high points of piping and chiller headers. 6. Drain Valve  ⇒ For flushing, cleaning, and maintenance.  ⇒ Located at low poin...