Skip to main content

Ductwork ( supply, return, exhaust)

 Ductwork is a critical component of HVAC systems, responsible for:


1.Air distribution: 

Supplying conditioned air to occupied spaces.

2.Air collection: Returning air to the HVAC system for re-conditioning.

3.Exhaust: 

Removing stale air, moisture, and contaminants from the building.



Types of ductwork:


1.Supply ducts: 

Deliver conditioned air to occupied spaces.

2.Return ducts: 

Draw air back into the HVAC system for re-conditioning.

3.Exhaust ducts: 

Remove air from the building, often used in bathrooms and kitchens.

4.Trunk ducts: 

Main ducts that branch into smaller ducts.

5.Branch ducts: 

Smaller ducts that connect to trunk ducts.


Key characteristics:


1.Material: 

Typically made of sheet metal, fiberglass, or flexible ducting.

2.Size and shape: 

Varying sizes and shapes to fit different applications.

3.Insulation: 

Often insulated to reduce heat loss and gain.

4.Seams and connections: 

Must be sealed to prevent leaks.


Factors affecting ductwork performance:


1.Design and layout.

2.Size and capacity.

3.Material and construction.

4.Leakage and sealing.

5.Maintenance and cleanliness.


Maintenance tips:


1.Regular inspection for leaks and damage.

2.Sealing leaks with sealants or tape.

3.Cleaning ducts and vents.

4.Replacing damaged or worn-out ducts.

5.Upgrading to more efficient duct materials or designs.


Proper ductwork design, installation, and maintenance ensure efficient and effective HVAC system operation, improving indoor air quality and comfort.

Comments

Popular posts from this blog

Type of Heat Exchanger

 There are several types of heat exchangers used in HVAC systems, including: 1. Coil Type:     - Chilled water coils     - Hot water coils     - DX (direct expansion) coils     - Evaporator coils     - Condenser coils 2. Shell and Tube Type:     - U-tube heat exchangers     - Straight tube heat exchangers 3. Plate Type:     - Plate and frame heat exchangers     - Plate and shell heat exchangers 4. Finned Tube Type:     - Finned tube heat exchangers 5. Spiral Type:     - Spiral heat exchangers 6. Regenerative Type:     - Regenerative heat exchangers 7. Adiabatic Type:     - Adiabatic wheel heat exchangers 8. Run-Around Coil Type:     - Run-around coil heat exchangers These heat exchangers are used in various applications, including: - Air conditioning - Heating - Ventilation - Refrigeration - Heat recovery - Industrial processes Each type of hea...

HVAC common unit converter chart

 Here's a comprehensive HVAC unit converter chart: Volume Flow Rate 1.CFM (Cubic Feet per Minute) to CMH (Cubic Meters per Hour):  1 CFM ≈ 1.699 CMH 2.CFM to m³/s (Cubic Meters per Second):  1 CFM ≈ 0.000472 m³/s Airflow Velocity 1.FPM (Feet per Minute) to m/s (Meters per Second):  1 FPM ≈ 0.00508 m/s 2.m/s to FPM:  1 m/s ≈ 196.85 FPM Energy and Power 1.BTU/h (British Thermal Units per Hour) to kW (Kilowatts):  1 BTU/h ≈ 0.000293 kW 2.Tons of Refrigeration to kW:  1 Ton ≈ 3.517 kW Pressure 1.Inches of Water Gauge (in wg) to Pascals (Pa):  1 in wg ≈ 249.08 Pa 2.PSI (Pounds per Square Inch) to kPa (Kilopascals):  1 PSI ≈ 6.895 kPa Temperature 1.°F (Fahrenheit) to °C (Celsius):  °C = (°F - 32) × 5/9 2.°C to °F:  °F = °C × 9/5 + 32 Additional Conversions Length 1.Inches to Millimeters:   1 inch = 25.4 mm 2.Feet to Meters:  1 foot = 0.3048 meters Area Square Feet to Square Meters:  1 sq ft = 0.0929 sq m Volume Gallons to L...

VALVES USED IN A CHILLER SYSTEM AND THE TYPICAL VALVE PACKAGE

  VALVES USED IN A CHILLER SYSTEM AND THE TYPICAL VALVE PACKAGE 1.Chilled Water Side Valves ⇒Isolation valve (manual/electric actuated). ⇒ Installed on CHW supply and return lines.  ⇒ Used to isolate chiller for maintenance. 2. Balancing Valve (Manual or Automatic)  ⇒ Ensures correct flow rate to/from chiller.  ⇒ Helps maintain Delta T and proper flow distribution.  ⇒ Located after evaporator outlet (return line). 3. Differential Pressure Bypass Valve (if 2-way valves in system)  ⇒ Prevents excess pressure build-up when terminals shut.  ⇒ Maintains flow through chiller. 4. Flow Switch  ⇒ Senses chilled water flow across evaporator.  ⇒ Safety interlock: trips chiller if flow is lost.  ⇒ Usually paddle type or electronic. 5. Air Vent Valve (Manual or Automatic)  ⇒ Removes air pockets.  ⇒ Placed at high points of piping and chiller headers. 6. Drain Valve  ⇒ For flushing, cleaning, and maintenance.  ⇒ Located at low poin...